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Abstract: A quantitative procedure is developed to determine the average hybridization and the degree of fluctuation from the 
average hybridization for an arbitrary orbital. The method is applied to the ab initio valence bond and localized Hartree-Fock 
molecular orbitals of H2O with interesting results. 

I. Introduction 
Hybridization is one of the most important concepts of 

quantum chemistry since it provides a basis for correlating 
many physical properties of molecules with electronic struc­
ture. ' This concept was originally introduced2 by Pauling and 
Slater who suggested that a mixture of s and p atomic orbitals 
(AO's) would provide a better function for bond formation 
than either an s or p orbital alone. In their treatment the bond 
is described by a pair of electrons in atomic orbitals, one on 
each of the two centers involved. Thus, hybridization is a va­
lence bond concept. Yet, because of its appeal, this concept has 
also been applied to localized molecular orbitals (LMO's) 
which are often truncated3 to remove contributions from AO's 
on all but one center. The LMO's, however, are not uniquely 
determined by an energy criterion4 as are their valence bond 
orbital (VBO) counterparts. 

In this note we present a quantitative method for deter­
mining hybridization coefficients of orbitals obtained by ab 
initio calculations. The salient features of our method are: (1) 
truncation is avoided since it can lead to arbitrary results; (2) 
an average hybridization taken over all radial distances from 
the center of interest is defined; and (3) a measure is provided 
of how much the hybridization fluctuates from its average 
value. This latter quantity is related to how effective the hy­
bridization is in altering the angular electron distribution of 
the orbital. 

II. Definition of Hybridization Coefficients 

Pauling's original treatment assumes that a normalized 
hybrid orbital can be expressed as the product of a one-center 
normalized radial function multiplied by a linear combination 
of normalized spherical harmonics, viz.,/(r)2/„,X/

my7"'(0,$). 
Such an orbital is characterized by the hybridization coeffi­
cients S„, I A/"' 12 which describe the fraction of the total den­
sity found in each total angular momentum /. However, in 
modern ab initio calculations optimum orbitals x(r>^4>) are 
obtained by letting the radial functions depend upon / (and 
sometimes m) and by taking linear combinations of AO's on 
more than one center. The optimum orbitals then do not have 
the simple Pauling form. 

Generally, most of the density in a VBO or LMO can be 
associated with one principal nuclear center, with smaller 
contributions being found near some or all of the other nuclei 
in the molecule. The multicenter character could be removed 
by truncation,3 retaining only those contributions from AO's 
on the principal center. But this leads to arbitrary results. To 
give an extreme example, the exact orbital could be written 
alternatively as an expansion in a complete set of basis func­
tions located only on a truncated center. In that case, nothing 
would be left after truncation! As a practical consequence, 
truncation will lead to results which are particularly sensitive 
to how the AO basis set is "balanced" among the various nu­
clear centers. 
t Radiation Laboratory, University of Notre Dame, Notre Dame, Ind. 46556. 

It is better to retain all terms and to expand5 the entire or­
bital about the principal center giving the (unique) result 

x(rM = LRi'"(r)Yim(8,<t>) (D 
l.m 

At a particular distance r from the principal center, the hy­
bridization coefficient h/(r) is then the fraction of the radial 
density found in angular momentum /: 

h,(r)=p,(ryp(r) (2) 

where 

Pi(r) = Z r*\Rr(r)\2 and p(r) = £ p,{r) (3) 
m I 

Since each spherical harmonic will, in general, be multiplied 
by a different radial function R/m(r), it follows that the hy­
bridization coefficients vary with radial distance. 

A more useful description of the hybridization would be 
given by a set of coefficients that are suitably averaged over 
radial distances along with a measure of the deviation of each 
coefficient from its average value. One obvious way to proceed 
is by fitting the exact orbital as closely as possible to Pauling's 
simplified form. This approach is straightforward to implement 
computationally.6 But the fundamental significance of Paul­
ing's form is questionable.7 It appears somewhat preferable, 
therefore, to construct the more conventional radial average 

f " w(r)hi(r) dr 

J w(r) dr 
0 

with w(r) being an appropriate weight function. The choice 
of w{r) is somewhat arbitrary, but it seems natural to select 
a function that weights most heavily those regions where the 
orbital has the largest total density. The simplest such choice,8 

namely w(r) = p(r), yields (assuming x to be normalized) 

hi= {" Pi(r)dr=Z C~r2\Rr(r)\2dr (5) 

This definition has further appeal because the average hy­
bridization coefficient, hi, becomes just that fraction of the 
total integrated radial density which is due to the angular 
momentum /. 

In order to know how well the average hybridization de­
scribes the orbital we require information on the dispersion of 
the hybridization coefficients about their average values. For 
this purpose, it is most convenient to employ the ordinary 
standard deviation of hi which is given by (w(r) = p(r)) 

«-[r^-H" J <«> 
Note that the Pauling treatment mentioned earlier corresponds 
to having each radial function proportional to a single/(r), i.e., 
R/m(r) = \imf{r), so that h/(r) = H1 for all r and a, = O. In 
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Table I. Average Hybridization Coefficients (sp"dmf) for the Lone Pair and Bonding Orbitals of H2O Calculated" from (5) with n = 
Ap/As, m = Ad/As, etc.* 

Orbital Valence-bond hybridization Localized MO hybridization 

Bonding'' SI.00±0.I5 p1.83±O.I4 JO.OI ±0.01 sI.OO±0.23 „3.31*0.14. (J0.20±0.I8 fO.03±0.03 
Lone pair'' si.oo±o.i4 pi.38±o.i3 si.oo±o.32 p2.5o±o.3o do.oi±o.oi 

S1.00±0.2I p0.56±0.20 

Truncated bonding' si.oo±o.i5 pi.77±o.i3 do.o2±o.o3 si.oo±o.27 p3.w±o,22 do.os±o.o7 
Truncated lone si.oo±o.is pi.52±o.i8 si.oo±o.i8 pi.83±o.i8 do.oi±o.oi 

pair'' si.oo±oo9 p0.36±o.o9 

" Coefficients with values less than_0.005 are not listed. h The error limits represent one standard deviation as given by eq 6. For proper 
normalization 07 has been divided by /is. ' The second valence bond bonding orbital is not included since it is essentially an s orbital localized 
on the H atom. d Each valence bond lone pair consists of two distinct spatial orbitals, the second listed being more radially diffuse and angularly 
more parallel to the molecular plane than the first. 

the general case, as long as o\ is small compared to hi there are 
only small deviations of the hybridization_about the average. 
If it turns out that 07 is large compared to hi then the average 
hybridization is not a meaningful measure of the true point by 
point hybridization, at least for that particular angular mo­
mentum component. 

For the hybridization to be effective at altering the angular 
electron distribution there must be substantial overlap between 
the radial functions of the important contributing angular 
momenta. This becomes clear if one considers the extreme case 
in which an orbital has an s component which drops off to es­
sentially zero at some distance rrj and a p component which is 
significant only at larger distances. In that case, the angular 
variation of the orbital function is entirely independent of the 
relative proportions of the s and p components! As a warning 
signal of such behavior, our procedure automatically produces 
a large standard deviation. For example, with an orbital of the 
extreme type just described, the value of ap ranges from 58% 
of hp for an sp3 orbital to 100% for an sp orbital. 

It should also be noted that the average hybridization 
coefficients do not uniquely determine the angles between the 
orbitals as they would in the Pauling formulation.9 In fact, the 
orbital axes must be found by a separate calculation, and often 
they will be curved, rather than straight lines, as they recede 
from the center of interest. In principle one can trace these axes 
by requiring that the first derivatives of the orbital function 
vanish in a plane perpendicular to the axis. This is the condition 
for local rotation symmetry about the axis. The defining 
equations that obtain are identical with those that determine 
the steepest ascent (descent) path from the nucleus of inter­
est. 

III. Application to H2O 

To illustrate our method we have calculated average hy­
bridization coefficients for the lone pair and bonding orbitals 
on the oxygen atom in H2O. Four sets of orbitals are presented: 
valence bond,10 truncated VB (with AO's centered on the H 
atoms deleted), localized molecular orbitals,4 and truncated 
LMO's. Each orbital was obtained in terms of a double f plus 
d basis set10 of Slater-type functions. For the nontruncated 
orbitals, the d and f terms were retained in the f-function ex­
pansions of the hydrogen atomic orbitals about oxygen al­
though their inclusion has only a small effect. 

The results are summarized in Table I. In general, the effect 
of truncation appears to be quite substantial for the LMO or­
bitals, but less so for the better localized VB ones. As indicated 
earlier the nontruncated orbitals are more satisfying on theo­
retical grounds. 

The standard deviations indicate small fluctuations from 
the average in most cases; exceptions occur only if the hy­
bridization coefficient itself is small. Furthermore, the average 

coefficients obtained by the alternate fitting procedure of ref 
6 differ little from those reported here. These results are in 
accord with the strong similarity between the s and p radial 
functions which one notices upon direct examination. We 
conclude that hybridization in H2O very effectively redistri­
butes the angular orbital electron density and that the calcu­
lated average hybridization coefficients will be insensitive to 
the choice of weighting function in eq 4. 

On the basis of the usual bond angle prescription" the lone 
pairs on oxygen would be sp 2 3 3 and the bonding orbitals sp401 

The LMO's, which are constrained to be orthogonal, come 
closer to these values than their VB counterparts which were 
not so constrained. But the latter are preferred because they 
lead to a more accurate overall wave function.10 Note that the 
VB hybrids for H2O have substantially more 5 character than 
the corresponding MO's and much more than one might have 
expected. Indeed, the diffuse outer VB orbital of each lone pair 
has a hybridization of sp0-56! 

Using the method given above we have also determined the 
angle between the axes of the bonding VBO's on oxygen which 
turns out to be 8.2° less than the corresponding internuclear 
angle. The resulting "bent bonds" are essentially linear all the 
way out to the region of large overlap with the hydrogen atomic 
orbitals. On the other hand, the lone pair VB orbitals are 
markedly curved. The more diffuse one, in particular, starts 
off on one side of the molecular plane and then rapidly crosses 
over to the other side where it has its maximum value.12 
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genvector X to constuct the best approximation to x of Pauling's form 
as 

X(rA<t>) =* [( L X3
2J"1 [ L X,R.wJ[ L XaVa(0,0)J 

The fitting parameter € turns out to be the square of the overlap between 
X and the optimum orbital of the form t[r) 2/,mX/m Y,m(8,4>). 

(7) For example, in order to obtain 2s and 2p orbitals with identical radial 
functions Pauling used a nodeless 2s orbital which cannot be orthogonal 
to a 1s orbital. 

(8) Other choices of w(r) might be made. For example, if one wishes to cor­
relate hybridization with a particular physical property then w(r) might be 
chosen to weight most heavily the radial regions of importance for that 
property. 

(9) In addition to assuming identical hybridization at all radial distances, the 
Pauling formulation also assumes that the axis of a bond orbital points di­
rectly at the nucleus to which the bond is formed and that hybrid orbitals 

Cyclobutane1 has been extensively investigated using elec­
tron diffraction23, IR-Raman,4"10 and NMR." All experi­
mental results agree that the molecule possesses a puckered 
structure with a small surmountable barrier to planarity. As 
its degree of nonplanarity is determined by a single puckering 
amplitude q12 one would expect detailed experimental infor­
mation on the equilibrium conformation and the inversion 
process. For a number of cyclobutane derivatives' 3~'7 micro­
wave and far-IR studies provide these data but for the parent 
molecule itself the corresponding details are less accurate, 

' owing to the fact that it has no dipole moment and hence no 
microwave spectrum. Furthermore, the ring puckering vi­
bration is IR inactive and no far-IR spectrum can be expected. 
Although the height of the inversion barrier has been deter­
mined quite accurately,8'9 several structural features are still 
not fully resolved: (a) Recent spectroscopic studies of the de­
gree of puckering8,1' vary considerably, (b) The amount of 
bond staggering of the methylene groups remains unclear, (c) 
The CH bond lengths found by electron diffraction2,3 and high 
resolution proton resonance in a nematic solvent1' are unex­
pectedly long compared with CH bond lengths of other cy-
cloalkanes. (d) No experimental account of the difference 
between axial and equatorial hydrogens in puckered cyclo­
butane has been given. 

Recent ab initio studies on cyclobutane18-21 were rather 
inconclusive with regard to these questions. With a minimal 
basis set of Slater-type orbitals the molecule was found to be 
rather flat with almost no barrier to inversion.18 A calculation 
employing floating spherical Gaussian orbitals was in rea­
sonable accord with experimental structural data but gave a 
barrier value much too high.19 Therefore, we would like to 
report a thorough ab initio study of cyclobutane using elaborate 
basis sets in order to get reliable predictions of the various 
energetic and structural features of the four-membered 
ring. 

on the same center are orthogonal. These assumptions provide constraints 
on the relative orientation of the hybrid orbitals. 

(10) The valence bond orbitals were obtained by a self-consistent-field opti­
mization of the wave function for a single perfect-pairing structure. See, 
D. M. Chipman, B. Kirtman, and W. E. Palke, J. Chem. Phys., 65, 2556 
(1976). 

(11) According to the prescription we mix normalized s, px, py, and p^ orbitals 
to produce two equivalent bond hybrids pointing at the hydrogen atoms 
(which subtend an angle of 104.45° at the oxygen) and two equivalent lone 
pair hybrids above and below the molecular plane. Constraints of nor­
malization and orthogonality then uniquely determine the hybrid orbitals 
leading to lone pairs forming an angle of 115.42° and giving the hybrid­
ization coefficients quoted in the text. 

(12) In practice we have found it difficult to follow this rapid crossover because 
of numerical roundoff errors. For the same reason the direction of the 
bonding VBO on oxygen becomes poorly determined as one enters the 
bonding overlap region. 

Quantum Mechanical Method 
Our investigation is based on single determinant restricted 

Hartree-Fock theory.22 A 6-3IG split-valence basis set aug­
mented by six d functions (6-3IG* basis) for the description 
of the carbon atoms was used.23 From previous studies it has 
become obvious that extended basis sets including polarization 
functions are sufficient to reproduce relative energies and 
geometries in good agreement with experiment.23-24 Therefore, 
our study was essentially aimed at determining these features 
of planar (Z)4/,) and puckered {Did) cyclobutane at the 6-31G* 
level. In order to obtain an initial guess of the theoretical 
structures, preliminary calculations with smaller basis sets were 
done, namely the minimal STO-3G basis25 and the extended 
4-3IG basis.26 

As indicated in Figure 1 the equilibrium structure of the Z)4/, 
form was evaluated by optimizing the CC bond length, the CH 
bond length, and the HCH bond angle. In the puckered D2d 
form axial and equatorial hydrogens were distinguished, thus 
giving two different CH bonds to be calculated. The degree of 
nonplanarity was determined by the puckering amplitude q.21 

An additional sixth degree of freedom arose from the fact that 
because of ring puckering the local Cu- symmetry of a C-
CH2-C fragment is relieved: the methylene groups tilt, which 
is quantitatively described by the tilting angle T depicted in 
Figure I.28 The structure optimizations were done using an 
improved version of the complementary Davidon-Fletcher-
Powell method.29 

Results and Discussions 
Table I presents the RHF energies of the two cyclobutane 

forms obtained with the STO-3G, 4-31G, and 6-31G* basis 
sets. Also listed are theoretical and experimental barrier 
heights. Table II gives the computed structural data of planar 
and puckered cyclobutane. The latter are compared with the 
results of two experimental studies. 

Ab Initio Calculations of the Equilibrium 
Structure of Cyclobutane 
D. Cremer 

Contribution from the Lehrstuhl fur Theoretische Chemie, 
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Abstract: The equilibrium structure of cyclobutane has been calculated by single determinant restricted Hartree-Fock theory 
using an extended basis set of Gaussian orbitals augmented by polarization functions. The molecule is found to be nonplanar 
with a degree of puckering of 0.23 A and a barrier to planarity of 0.9 kcal mol-'. Tilting of the methylene groups proves to be 
essential for relieving steric strain. 
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